Going with the Flow: The Recipe for Baking a Better Solar Cell

Inexpensive thin-film photovoltaic cells made from organic plastics may be one of the fastest ways to ramp up production of solar power—if only they could do a better job converting the sun's energy into electricity.

One of the keys to unlocking organic thin-film's capabilities, according to a team of University of Washington in Seattle researchers headed up by chemist
David Ginger, is to better understand how electrical charges move through solar cells by studying their structure at the nano level.

Ginger says his team has been able to do this, directly measuring how much current is carried by each tiny bubble and channel formed during the making of the plastic in a solar cell, giving a better understanding of exactly
how a solar cell converts light into electricity. This information could help engineers leap the hurdle of coaxing these carbon-based materials to reliably form the cheapest and most efficient structure for generating electric current and moving that current to wires leading out of the cell.

Plastic solar cells generally are made by blending two materials together in a thin film, then baking them in a process that causes bubbles and channels to form much as they would in cake batter, Ginger said. The number of bubbles and channels (which are roughly 10,000 times smaller than a human hair) as well as their configuration can be altered by how much heat is applied and for how long.

The immediate goal of this knowledge is to create thin-film solar cells mass-produced from organic materials that can convert light into energy with 10 percent efficiency. Whereas early organic solar cells could muster only 2 or 3 percent efficiency, more recently they are achieving about 7 percent. Still, Ginger says, "you can make seven percent in your lab but end up with a mass-produced cell that's only three percent efficient."

The goal of 10 percent efficiency is seen as the point when an organic thin-film solar cell would be ready for commercialization, Ginger says. At this point, solar cell–makers (not to mention energy consumers) are concerned, generally, with how much a watt of energy will cost them, how long the solar cells will last, and what their peak performance will be. Because no one is currently mass-producing organic thin-film solar cells, he adds, it's difficult to know how this process will affect their quality or how much they'll cost the end consumer.

Comments

Popular posts from this blog

Global warming could drive world temperatures up 7 degrees by 2100

Climate Change Skeptics Lash Out At New Global Warming ‘Hiatus’ Study That Questions Ocean Temperature Measurements

Why Is Critical Technology to Stop Global Warming Stalled?